
NAVAL POSTGRADUATE SCHOOLMonterey, California

AD-A257 603

I~~~ L~ ~illililllililiii

If 01_DTIC

THESIS

NPSNET: Dynamic terrain and cultured feature depiction.

by

0 Alan K. Walters

wz September 1992

Thesis Advisor: Dr. Michael J. Zyda
Co-Advisor David R. Pratt

Approved for public release; distribution is unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

" NAME OF gE6FORIQ ORGANIZATION OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer (if applicable) Naval Postgraduate School

Naval Postgraduate School i CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Inciiude Security Classifcation)
NPSNET: Dynamic terrain and cultured feature depiction.

12 PEV,•Ot AL.L[LHOR(S)
Aan Ieitnwaters

Tier EPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)
I FROMXM TO: 9192 1992, September 1 80

16. SUPPLEMENTARY NOTATIOl he views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Dynamic terrain, Berms, Craters, Bridges, Distributed Simulations.

19. ABSTRACT (Continue on reverse if necessary and idenbify by block number)
The terrain of a battlefield is in a constant state of change. There are new berms and emplacements being built,

and bombs are falling leaving a crater marked terrain behind. There are bridges that must be crossed and bridges that
may not be crossable. Dynamic terrain is currently not implemented in virtual battlefield simulators such as SIMNET
and NPSNET, and as a result there is a lack of needed realism to the battlefield. This work adds the dynamic features:
berms, craters and bridges into NPSNET and increases the realism of the simulator dramatically. Vehicles in the
simulation realistically traverse the features, tilting and rolling as they should on bumpy terrain. This work was
accomplished using C++ and object-oriented programming, adding tremendous flexibility and growth potential to the
new terrain and its features, as well as easier maintenance for later users.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED/UNLIMITED [Q SAME AS RPT. Q DTIC USERS UNCLASSIFIED
QE •••.. REJLSPONSIBL E INDIVIDUAL 22(8)EPON ncde4.14 reCode) 122cýý/E SYMBOL

22b. TELEPHONEIInckode AreaCoe c
Zyia(408) 64-V4

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

NPSNET: Dynamic terrain and culturedfeature depiction.

by
Alan Keith Walters

Lieutenant, United States Navy
B. A., Harding University, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

Author:

Alan Keith Walters

Approved By:

Michael J. Zyd'a, 1%is Advisor

David R. Pratt, Thesis Co-advisor

obert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

The terrain of a battlefield is in a constant state of change. There are new berms and

emplacements being built, and bombs are falling leaving a crater marked terrain behind.

There are bridges that must be crossed and bridges that may not be crossable. Dynamic

terrain is currently not implemented in virtual battlefield simulators such as SIMNET and

NPSNET, and as a result there is a lack of needed realism to the battlefield. This work adds

the dynamic features: berms, craters and bridges into NPSNET and increases the realism of

the simulator dramatically. Vehicles in the simulation realistically traverse the features,

tilting and rolling as they should on bumpy terrain. This work was accomplished using C++

and object-oriented programming, adding tremendous flexibility and growth potential to

the new terrain and its features, as well as easier maintenance for later users.

Aooesston For

NTIS !PA&I
DTIE TA31
'Jna•r• --ic d 0
Ju.st 1if !±t i o

D ist Spoir
-- ~jj i ,.st •:'Jo{

/~'

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. vi
1. INTRODUCTION .. 1

A. BACKGROUND .. 1
B. OBJECTIVES ... 1
C. SCOPE .. 2
D. PREVIOUS W ORK .. 2

1. Earthworks for Distributed Simulation ... 2
2. Dynamic Database Modification in Distributed Simulation 3
3. Virtual Bulldozer ... 5

E. ORGANIZATION ... 6
II. NPSNET ... 7

A. GENERAL INFORMATION ... 7
B. TERRAIN LAYOUT ... 7

III. EARTHW ORKS .. 9
A. ISSUES CONCERNING PLACEMENT ... 9

1. Craters .. 11
2. Berms .. 14

B. VEHICLE TRAVERSAL OF EARTHWORKS 17
C. ISSUES CONCERNING RUN-TIME MODIFICATIONS OF EARTH-

WORKS 21
1. Natural .. 21
2. Man Made ... 22

IV. BRIDGES ... 23
A. PLACEMENT .. 23
B. TRAVERSAL .. 24

1. Getting on the Bridge ... 24
2. Driving Over the Bridge .. 25
3. Driving and Falling Off the Bridge .. 26
4. Driving Under the Bridge .. 27

C. RUN-TIME MODIFICATION OF BRIDGES 27
V. NETW ORKING AND DYNAMIC TERRAIN .. 28

A. COMMUNICATIONS .. 28
1. Signing on/off. ... 29
2. Creation of a Feature .. 29
3. Modification of a Feature .. 29
4. Removing a Feature ... 29
5. Requesting a Feature ... 29
6. Dynamic Terrain Server ... 30

B. DYNAMIC TERRAIN PROTOCOL DATA UNITS (PDU'S) 30
1. Dynamic Feature Construction and Modification PDU 30
2. Destruction PDU .. 32

ih

3. Maximum Feature ID PDU .. 33
4. Playback PDU .. 34

C. SIMULATION RECOVERY ... 35
VI. CONCLUSIONS AND FUTURE WORK ... 37
APPENDIX A CLASS HEIRARCHY .. 38
APPENDIX B CLASS DESCRIPTIONS ... 39
APPENDIX C PROGRAM USER'S GUIDE ... 65
LIST OF REFERNECES ... 71
INITIAL DISTRIBUTION LIST ... 73

i I ilamiinnnmli N l ma tna an IV

ACKNOWLEDGEMENTS

The road to the completion of this research and my master's degree has been hard,

challenging, and exhilarating. I am grateful to the Navy and the faculty of Naval

Postgraduate School for the opportunity and education that I could not have received

elsewhere. There are many people responsible for helping me get through the hard work,

but I would like to acknowledge just a few of them.

First and most important person I want to thank is my God. It is His grace and blessing

that I have arrived at this point in my education, career and life.

To my wife Sandy, who kept me going to the finish, when I wanted to quit. Her

patience and love is greatly appreciated.

To my father and mother who continue to encourage me !o reach higher and higher

plateaus in my professional career. No son could ask for better parents than I have.

David R. Pratt and Dr. Michael P. Zyda, my thesis advisors, for giving me the

opportunity to work for them on NPSNET. They made the work fun and enjoyable.

Captain Leonard Tharpe, U.S. Army, has been my closest friend and companion

throughout my two years of education. We were the best of study partners, and without his

assistance studying for some of the difficult classes would have been more intolerable.

Lieutenant Kalin P. Wilson, U.S. Navy, has been my mentor and tutor through many

programming projects. Kalin provided the superb libraries that were used extensively in my

thesis work.

Pacific Grove Church of Christ who kept my spirit up and my hopes high. Aikido of

Monterey for the physical exercise and tension relief from the long hours of study.

vi

L INTRODUCTION

A. BACKGROUND

A battlefield is alive with action. The terrain that was once gentle rolling hills of green

grass is now marred with craters from exploded munitions. Berms and emplacements have

been built to provide protection and slow the advancing enemy. Terrain, in the real world,

is always changing due to weather and humans, mostly humans. Humans will build a bridge

to cross a river and a levee to prevent rising flood waters. When humans decide to war they

will build the emplacements and berms, and then proceed to destroy these things and leave

the terrain marked with craters.

This type of dynamic terrain is not currently implemented in battlefield simulators

such as NPSNET [ZYDA 92], SIMNET [IEI 921 and JANUS [JANU 86]. The terrain in

these simulators remains a constant from simulation initialization to completion. There is

no ability to place a bridge across a river and be able to drive over it or fall off of it. When

a player fires a missile and it impacts the terrain, because he or she missed the target, there

is no resulting crater. Even if a simulator uses some sort of a marking for craters, such as a

burnt spot, this does not affect the vehicle in any way. This lack of dynamic terrain and

vehicle interaction is a deficit to the realism of the battlefield simulators. It also results in a

loss of vital tactical and strategic information when planning or reviewing a battle.

The addition of dynamic terrain to NPSNET vastly improves its realism. Dynamic

terrain would has visible and physical effects on the vehicles in the simulator, thus allowing

the players to be hampered by craters and berms, and to improve their chances of victory

by strategic placement of berms.

B. OBJECTIVES

The terrain in NPSNET does not currently allow for dynamic run-time changes. It

consists of series of squares that are divided into two triangles per square. Each corner of

the square contains an elevation value for the terrain. Once the terrain is read into the

program, it remains the same until the program ends. The purpose of this work is to propose

a method to implement dynamic terrain into NPSNET using an object-oriented design in

C++. Using C++ and object oriented design allows each feature to handle all details that

concern it, such as: creation, displaying, and interacting with the vehicles that traverse it.

The result is the ability to place a dynamic feature anywhere in the simulated world without

having to modify the underlying terrain or being limited within a grid square, as well as

having a visible and physical effect on the vehicle that traverse it.

The proposed implementation of dynamic terrain features in NPSNET adds a greater

sense of realism to the simulator. When a player fires a cannon or missile and it impacts the

terrain, the result is a crater. If a player traverses the crater his/her vehicle has the effect of

driving over bumpy terrain. If a vehicle is on a bridge and drives over the edge it falls off.

The added realism makes battlefield planning or a battle review more accurate and

effective.

C. SCOPE

The scope of this research is to implement in NPSNET three dynamic terrain features:

craters, berms, and bridges. Each of these objects is a C++ class. This research also

implements vehicle traversal for each of the features. The terrain features are able to fit any

grided terrain. The NPSNET terrain base has been redesigned in C++ to support the new

features. The traversal of these features by vehicles is also under the scope of this research.

D. PREVIOUS WORK

1. Earthworks for Distributed Simulation

Dynamic terrain, according to Latham includes: point features: bridges and

buildings, line features: power lines, fences and tracks, areal: mine fields, and three

dimensional: berms and craters [LATH 92]. The basic earthwork is a three-dimensional

trapezoidal cross-section that is linearly interpolated between a sequence of vertices. At

each vertex, the dimensions of the cross-section can be changed. If a negative height is

supplied, the feature becomes a ditch instead of a berm. The ends of the earthwork are

2

handled by using a close approximation of the frustum of a cone. This treatment of the ends

of the berms allowed Latham to use a negative height and a shared point to make craters.

The user could specify the number of polygons to represent the feature.

Earthworks can have multiple segments, and if so, the end of one segment marks

the beginning of another. Just as there is a special case for the ends, there is a special

handling of the joints of two intersecting earthworks. At the joint of two intersecting

earthworks, there is a bevel dissecting the angle of intersection. If earthworks overlap, the

most recent structure's properties are used and displayed. The surface properties are given

DMA-compatible codes rather than a specific color. The same is true for soil types.

2. Dynamic Database Modification in Distributed Simulation

There are battlefield simulators that exist on a single machine, but the ideal

simulator should be networked so that there can be many players, that can be separated by

great distances. Lindberg proposed a system of Protocol Data Units (PDUs) for dynamic

terrain and events [LIND 92]. This proposed system provides capability for exercise-

specific modifications to be made to the various databases. It also allows for support of

mission rehearsal training.

With any networked system, the content of the communications must contain

sufficient detail to allow a sense of commonality. For example, the color or surface

properties on one system may be drastically different on another system. The

communication must contain enough information for a receiving system to understand and

reproduce the feature's appearance, geometry, and placement. Lindberg proposes a set of

DMA/Project 2851 [DMA 861 descriptors which can be incorporated in the Dstributed

Interactive Simulations (DIS) [IST 91]Standard as the basis of appearance. It is assumed

that the database is from a common source. The proposed PDUs provide the capability to

describe a large variety of shapes in a basic structure format (height, width, and etc.). Also

included in the PDU is the ability to use time varying geometries. Lindberg states that there

are two problems associated with placement of features in networked dynamic terrain.

3

First, each system can have a different geometric representation of the terrain. Second,

continual updates or modifications to the terrain during an exercise might evolve

differently between two databases. Lindberg proposes a solution of using a geometric

description that is in a coordinate system independent of the local geometry and relative to

the surface plane. Other issues of placement are areal features and nonareal features. Areal

features such as flooded areas, burnt areas, and airfields are flat and will fill in low areas or

clip high areas. Non-areal features such as roads, berms, and trenches must fit the

underlying terrain. With this proposed system, the player can remove underlying features

when lacing an areal feature. Non-areal features are additive. This has the effect of building

over a period of time. There are five types of PDUs proposed by Lindberg:

"* Dynamic Areal Feature - oil spills, bunt area, flooding and etc.
"* Dynamic Feature - bridges, roads, trenches, and etc.

"* Static Feature Modification - permanent strctures, roads, and etc.
"* Maximum Sequential ID PDU - This is occasionally sent to all of the members to

notify them of the total number of changes that have been made to the database.
"* Dynamic Playback request PDU - a PDU sent by a host to another host in order to

pickup a missing dynamic event.

The protocol of this proposed system is discussed in three cases: issuing a PDU,

receiving a PDU and simulation manager.

a. Host Issuing PDU:

During start-up of a new host, the simulation manager sends the host its

maximum sequential ID. If the ID is not zero, then the host checks its own list to ensure that

it has all of its feature modifications and request those it does not have from the simulation

manager. When a host sends a new PDU it first increments its maximum sequential ID and

then attaches it to the modification PDU.

b. Host Receiving PDU:

If a host is just starting as a new player the system sets all of the variables

for the maximum sequential ID of the other players to zero. If the host is resuming play after

4

a period of inactive time then it uses the last known value. When a PDU from another host

is received, the system checks it internal value with the ID of the PDU received. If it is

missing PDUs then it requests them from the sender of the original PDU.

c. Simulation Manager:

The simulation manager assumes the role of sending maximum sequential

IDs and responding to all request PDUs for all host who have exited the simulation. In order

to do this, the simulation manager must maintain complete detail of all the host activities.

The simulation manager is also responsible for setting the initial simulation conditions by

means of PDUs.

3. Virtual Bulldozer

Moshell and his team of scientist at Visual System Laboratory have been doing

research in dynamic terrain with a virtual bulldozer [MOSH 92]. The terrain consists of a

regular (x,y) grid of elevation post. Each post has a z value that represents the terrain

elevation. This is the standard cartographic representation of terrain. The assumption is

made that the terrain is a collection of square columns with sloping tops. These squares are

referred to as cells.

The bulldozer was chosen because it is the principle earth moving tool of the

military and commercial construction companies. When the bulldozer moves across the

terrain pushing soil into other cells, unrealistic steep banks were the result when a simple

volume-conserving approach was used. A simple kinematic approach was used to reduce

CPU cycles and to yield plausible soil profiles. The height of the berm was determined by

the amount of the terrain moved by the dozer. The profile was determined by the slumping

and is a function of the berm height. The smoothing of the pushed soil was done with

cardinal splines.

As the bulldozer moves over new cells, the terrain is compared to the bottom of

the dozer's blade and the outer cell post in front are given the difference. The elevations at

these outer post and the elevations of the adjacent existing elevations are put into a Cardinal

5

spline to compute the remain cell post heights in the berm area. This proposed approach

allows the bulldozer to operate over terrain with varying cell sizes, because the control

points of the Cardinal spline are determined by the bulldozer geometry and not the specifics

of the terrain grid. This virtual bulldozer operates on a Silicon Graphics 4D/70GT at a rate

of 5 to 10 cycles per second with a wire frame rendering.

Moshell's team proposed a battlefield simulator on an hypothetical image

generator, MARK 1. The MARK 1 is supposed to similar to the Ml Al tank simulator for

SIMNET. The terrain features in this proposed system contain much less detail than the

virtual bulldozer, but this is necessary for real time simulation. Craters in this system would

consist of 15 to 50 polygons each and the number of craters per square kilometer is between

33 to 128.

E. ORGANIZATION

Chapter II briefly covers a description of NPSNET terrain as it was before the

implementation of this work. It also has a description of the vehicle's terrain traversal

method.

Chapter III covers a description of berms and craters, and the issues that apply to each.

For each, a description of description of appearance is given. Placement of these features

on the terrain is also covered, as well as vehicle traversal of the features. Methods to modify

the features during run-time are prescribed.

Chapter IV covers bridges and the special cases of vehicle traversal that apply only to

bridges. A description of the appearance is given for the intact bridge and the destroyed

bridge.

Chapter V covers networking of dynamic terrain. The communications requirements

of the network regarding the use of dynamic terrain is discussed. The Protocol Data Units

are proposed and described for the intergradation of the dynamic terrain features into a

distributed simulation.

Chapter VI is the conclusion and the recommendations for future work.

6

II. NPSNET

A. GENERAL INFORMATION

NPSNET is a low cost real time battlefield and vehicle simulator. NPSNET is similar

to SIMNET, a DOD large scale networked simulator [ZYDA 92]. NPSNET allows players

to drive many different types of vehicles and some humorous objects such as flying cows.

There can be as many as 500 different vehicles being driven in the world at one time. These

vehicles can be autonomous and return fire when fired upon. There are numerous terrain

objects such as bushes, trees, rocks and much more in the world. Depending on the model

of workstation used, there are some special effects available such as fog and textured

landscape. The simulator is networked via Ethernet, allowing several players to interact.

B. TERRAIN LAYOUT

The terrain in NPSNET is based on the one kilometer standard of the military grid

square [PRAT 92]. There are four display resolutions: 125, 250, 500, and 1000 meters. The

terrain is rendered as grid squares containing two triangles. Each of the corners of the grid

square is an elevation post, and elevations for positions in the center of the grid square are

computed by linear interpolation. Only the terrain that is within a specified distance of the

driven vehicle is displayed and as the vehicle moves across the terrain a new section of

terrain is read in from a file. There are currently no provisions in NPSNET for dynamic

terrain. Once the terrain is read into the system, it remains the static until the end of the

exercise. Vehicles traversing the terrain use a simple two point method to determine their

orientation to the ground. This is accomplished by sampling a point to the right of the

vehicle, and directly in front of the vehicle for the terrain elevation (Figure 1). The roll and

pitch of the vehicles are determined from these two point. This method is simple, but

sufficiently adequate to set the proper orientation. There is some micro terrain in the

NPSNET simulator. Micro terrain includes features such as airfields, forest canopies, and

swamp land. The vehicle's orientation is not affected by the micro terrain.

7

pitch Sampling points

Vehicle
Direction _ _

Vehicle top view

Figure 1: Two Point Vehicle Orientation

M. EARTHWORKS

Earthworks are features that are built up by man such as: berms, emplacements, and

trenches. In this research the focus is on berms, and also include craters as an earthwork.

A. ISSUES CONCERNING PLACEMENT

In order to place an earthwork into NPSNET, an understanding of the layout and

rendering of the terrain is necessary. The terrain is made up of a series of squares, with each

comer of the square is an elevation. The square is divided into two triangles with the

diagonal running from top left comer to the bottom right comer (Figure 2). The upper left

comer is the information holder for the square. It contains information such as: the objects

that are in the square, the vehicles that are in the square, and the properties of the triangles

in the square. To find an elevation with in a grid square linear interpolation is used, and to

find which grid square an object is in, simply divide the position values by the size of the

grid. This can be done because the grid squares are uniform size. If the grid squares were

of variable size, a more complicated method would have to be used.

0,05,

•••••Upper

NorthLower
Triangle

East

0,5

Figure 2: Underlying Terrain Grid of NPSNET

9

One consideration in placing earthworks into this terrain is what happens when it

crosses multiple grid squares. In NPSNET, each grid square is responsible for displaying

the objects that lie within its border. The objects could be limited to lie within the borders

of a grid square, but that is unrealistic. If each an earthwork lies within multiple grids, then

a determination must be made about which grid square is going to be responsible for

pointing to, maintaining, and displaying it. The reason this is so important is because in

NPSNET the terrain is rolled in from disk as needed, in order to save memory. Terrain

culling is done to save time on the graphics pipeline. If only one of the grid squares pointed

to the earthwork, then as a square that contains a portion of the earthwork is rolled for

display, that does not control the earthwork, the result would be no interaction and no

displayed earthwork. The cause of this is that the outlying grid squares do not have any

knowledge of the earthwork, therefore have no reason to display or check it for an

elevation.

This work made extensive use of C++'s object-oriented capabilities to design and

implement the terrain and dynamic terrain features. By making each earthwork a class

derived from a common base class (class deformations), virtual pointers, and reference

counting pointers, each grid square can have a linked list of reference counting pointers to

any earthwork that touches inside its borders. This gives the grid square access to the

earthwork for interaction regardless of where the placement point is. The class itself

determines if it should be displayed or if it already as been displayed, thus the grid square

only has to notify the earthwork to display itself. This same approach is used for all of the

access functions of the class.

The major concern of placement of earthworks is whether or not to modify the

underlying terrain. To have an extremely realistic crater, this must be done. To modify the

underlying for earthworks such as craters and trenches requires the addition of micro grid

squares within a standard (normal) grid square or by completely changing the square layout

and rendering. Changing the square layout is extremely complicated and becomes time and

10

computational intensive. The first might be a better approach but could also increase the

amount of memory used and reduce the speed at which vehicles can move across the terrain

and still be rendered real-time.

One approach to placement of earthworks is to divide each square into four equal parts

and continue to do the same for each square inside of a divided square that is touched by an

earthwork. In this manner the number of additional data members of the terrain database

can be kept to a minimum. The approach chosen in this research was to have all craters, and

berms (the earthworks covered in this research) to exist above the terrain. By using the

linked list of reference counting pointers and allowing the earthworks to exist above

ground, the original database does not have to be modified other than having to add a

pointer to its linked list of deformations (earthworks). The following sections discuss the

specifics of adding berms and craters to an existing terrain database.

1. Craters

Craters are usually depressions in the terrain, but also have a berm ring around

the edge. They are also usually oval and irregular in shape [ARMY 83]. Having a crater that

actually goes below the terrain is the most realistic approach, but that requires the terrain

to be modified and drastically increases the amount of work required to access the terrain

in the affected area. This research implemented the crater above ground and looking similar

to a circular or ringed berm. While this is not the most realistic crater, it is still sufficiently

realistic and provides greater flexibility. The craters used in the prototype were built up as

a frame of four concentric circle that spread out from the placement position and sixteen

spokes that originated from the placement position that are equally spaced in degrees

(Figure 3). The middle two rings are the ridge at the top of the berm, and are set above the

existing terrain. The craters implemented in this research are of variable radius, but are

uniform in appearance (Figure 4). The construction of craters is a simple call to the class

constructor, and the class constructor algorithm takes care of all that is needed to build and

add the crater to the terrain (Figure 5).

l1

Crater cross section

Top View

Figure 3: Crater Cross Section

12

Figure 4: Craters

13

crater(XXXXXXXX)
set the placement position
set the radius
get the material property of the underlying terrain
get an ID number
for each spoke of the crater loop

for each ring of the crater loop
compute the x and z values for the point
get an elevation of the underlying terrain at the point
if the point is an inner ring

add the offset to the elevation
turn the indicator bit on for this area
stack a pointer to the grid square containing this point

end loop
end loop
check the stack of pointers
for each pointer loop

add the crater to the linked list pointed to by the pointer
end loop
calculate the normals for each point

end

Figure 5: Crater Constructor

2. Berms

Berms, unlike craters, do exist above ground and have no real need to modify the

underlying terrain. The berms proposed and implemented consists of a starting or

placement position, a direction, a length, a width, and a height. The berm length is divided

into ten eqiial segments to allow it to follow the terrain over a hill or through a valley. If

fewer segments arm used, then there is a greater chance of a berm section that cuts through

a mountain or floats between two hills. If the berm is too long, the same problem can occur

14

with the sections. Since berms can be pushed up from the ground or built with materials

that were supplied such as concrete, the material for the berm can be supplied by the placer.

Besides the ten sections for length there are three sections for the width. The two outer

sections are the slope of the berm and the inner section is the top (Figure 6). The cross

section of a berm is trapezoidal. The prototype berms in this research were designed with

a standard end piece. To join two berms together, the placer needs only align the berms so

that the ends intersect. Emplacements are created by joining three berms together (Figure

7). Berms are started from the placement point and runs in the specified direction and to the

specified length. A different approach might be to place the starting point at the center of

the berm and work in both directions, but that results in more complicated computations for

construction and for finding an elevation at any point on the berm.

Berm Side View

Berm Top View

Figure 6: Berm Cross Section

15

Figure 7: Berms Used as Emplacements

Growth of berms can be accomplished by changing the berm's parameters or by

deleting the berm and constructing another berm which is slightly larger than the first. The

first method is the simplest, because the builder need only to make calls to the parameter

methods of the berm class. The disadvantage to this method is that the berm will grow from

the starting point, therefore it will appear to only in one direction. If having the berm grow

in both directions is needed it is best to delete the old and build a new in its place. The

general berm construction algorithm is presented below (Figure 8).

16

Berm(X)CUXX)OCXXX)
Set the placement position
Set th e lengthset the wtidt
Set the height
Set the direction
Set the material
for each width segment line loop

for each length segment line loop
compute the x and z value of the point
get the terrain elevation at this point
if the point is a top point

add the height to the elevation
turn the indicator bit on for the area of the point
Stack a pointer to the grid square that the point is in
increment the length segment

end loop
increment the width segment

end loop
check the stack of pointers
for each pointer loop

add the berm to the linked list of the grid square pointed to by the pointer
end loop
compute the normals for all of the points

end

Figure 8: Berm Construction Algorithm

B. VEHICLE TRAVERSAL OF EARTHWORKS

Having earthworks in the virtual battlefield is an extremely important part of the

realism, but if the vehicles do not traverse them in a realistic manner then the earthworks

are meaningless. The vehicles must be able to cross over craters and berms having the

proper orientation depending on the amount of the vehicle that is on the earthwork and the

location of the vehicle on the earthwork.

17

Determining the orientation for realistic vehicle traversal requires that the elevation of

the terrain be taken in at least four, the four comers or tires of the vehicle. The method used

contained six points, the four previously mentioned and two in center of each side of the

vehicle (Figure 9). This is where the class hierarchy of C++ comes in handy. The vehicle

needs only make a call to the terrain class for an elevation for each of the orientation points

it needs. For each call to the terrain for elevation, the terrain class checks the comer point

of the appropriate grid square to see if there are any earthworks. If there are earthworks

present, the terrain class queries the earthwork for the elevation at the requested position.

The earthwork class performs the appropriate computations and returns a value. This is

done for all earthworks that fall under the requested position. The value that is ultimately

to be returned to the vehicle is the greatest of these elevation values. The greatest is returned

because earthworks can be overlapped and more than one may exist at the requested

position. For example, a berm might intersect another slightly taller benn and it is

undesirable to have vehicles drive through the taller berm because only the value of the

shorter berm was returned.

Once the vehicle has the elevations it needs for each of its orientation points, it can

compute the orientation. There are assumptions and issues to consider when computing the

orientation of the vehicle. Previously in NPSNET the vehicle orientation was determined

with only two points, one in front and one to the right side of the vehicle. This worked well

as long as there were no berms or craters, but with the addition of dynamic terrain a new

way of determining the orientation needed to be devised. The multipoint method mentioned

above is the method chosen. The two point method is still used when there are no

earthworks present. The two point method is faster than the multipoint method, therefore it

should be used when there are no earthworks present. To make the determination of which

method to use, the vehicle can query the terrain for the presence of any earthworks in the

area where it is. This can be enhanced by using a bit grid where each bit represents a portion

of the grid square. This is an extremely effective and efficient way to check the terrain,

since all that is being done is checking to see if a bit has been set. The terrain, which is a

18

matrix of grid squares, has a bit grid large enough to divide all of the grid squares into equal

parts. For example each square might be represented by a four by four matrix of bits. By

using multiple bits inside of each square the vehicle only has to use the multipoint when in

an area that is represented by a bit that has been turned on.

> Orientation

Veh le
Points

Di tion

Pitch Axis Front Pitch Axis Rear Pitch Axis Middle

Vehicle pitch is determined by the greater of the angles of pitch axis, and the
speed and direction of the vehicle.

Roll is determined by the highest orientation point elevation from each side

of the vehicle.

Figure 9: Multipoint Vehicle Traversal Orientation

19

The vehicle is considered to be a rigid body, and since the shocks of the vehicle are

not modeled in NPSNET when one wheel is lifted higher, the entire side of the vehicle must

be lifted (Figure 10). When computing the pitch of the vehicle, the average between the

front orientation points, the center of the vehicle, the rear orientation point is taken

respectively. Then based on the speed, and direction of the vehicle, the pitch is determined

by taking the greater of the angles between the points. If the vehicle is traveling forward,

then its speed will be positive and the angle that is greatest between the middle and the front

or the rear and the front is used to compute the pitch. To compute the roll of the vehicle, the

greatest elevation value on each side of the vehicle is used. The reason for this approach is

for the case of a tracked vehicle. If the tracked vehicle is traversing a crater so that only one

side of the vehicle contacts the crater, that side should remain at that height until the rear of

the track has passed off of the crater. Speed is an important factor because if the vehicle is

going backwards, it must obey the same orientation behavior as when it is going forward,

only in reverse

20

Figure 10: Tank Traversal of a Crater

Once the orientation has been computed, the elevation of the vehicle itself must be

computed. If a vehicle is partially on a berm or crater, then the elevation must be computed

using the orientation point elevations and not the elevation of the terrain below the vehicle

center. If the elevation of the terrain at the center of the vehicle were used, the orientation

based earthwork would cause part of the vehicle to disappear below the terrain.

C. ISSUES CONCERNING RUN-TIME MODIFICATIONS OF EARTHWORKS

There are two reasons that the terrain changes, natural and man-made. This section

briefly discusses the issues of change the terrain and earthworks during run time of the

simulation.

1. Natural

Natural changes to the terrain are from sudden catastrophic events such as

earthquakes, hurricanes, flash floods, and the like, or they happen over a period of time

21

such as erosion from wind and rain. These types of changes are not implemented due to the

short duration of the simulations.

2. Man Made

Changes caused by man such as the building of berms and trenches, and the

destruction of these features are more likely to occur within the lifetime of an exercise or

simulation. When a bomb falls, the result is a crater. Berms can be breached by explosions

and by machinery such as bulldozers. There are two, possibly more, methods of breaching

a berm. The first is to compute the appropriate changes and set the changes to the berm or

crater directly through the class access functions. The second method is to delete the

original berm and replace it with the appropriate number of smaller berms. The second is

less complicated to accomplish, because the same values are be used by the new berms that

were used by the old berm, with the exception of the length and computing a new position

for the additional berms. The second method is used in this work.

22

IV. BRIDGES

A. PLACEMENT

The placement of bridges is similar to that of the earthworks, except bridges need a

more planar look and feel. Bridges, like earthworks are kept in a linked list for each grid

square that is touched by it.

There are many types of bridges, but only the overpass style of bridge was

implemented. The bridge has three components: two ramps and one span. The bridge can

be adjusted to take on many forms by varying the parameters of the three components.

Bridges have a direction, three lengths, two heights, and one standard width (Figure 11).

This is all that is needed to have a realistic bridge in the simulation. This bridge is simple

in form, but fairly realistic.

p2 height
ramp 1 heish\

span length S,• ramp 2

Figure 11: Bridge Cross Section

Bridges in real life can be curved and angled in the direction of travel, but in this work

a simpler and straightforward approach was used. Each pair of points that make up the top

23

of the bridge is set to the same height This insures that the bridge is level and not bent. This

compromise is more than justified, because of the less complicated method to construct a

bridge. The bridge can slope, however, from end to end. Bridges cannot be overlapped.

B. TRAVERSAL

Traversing a bridge is completely different from the manner that earthworks are

traversed. Unlike earthworks, a vehicle must be able to cross over and under bridges, and

it must be able to fall off of the bridge (Figure 12). One of the major concerns with

traversing bridges is not jumping up to the bridge when the vehicle should be going

underneath. There must be some method and tag for the vehicle to know that it is on or off

a bridge. If a vehicle is on the bridge, it must use the bridge elevations until it is off of the

bridge.

Figure 12: Vehicle Traversal of a Bridge

1. Getting on the Bridge

For a vehicle to get on the bridge, it must be properly aligned with the bridge and

preceding in the correct direction. For this reason, the vehicle also passes a reference to

itself when it makes the call to the terrain. Assuming that the vehicle is not yet on the

bridge, the call to the terrain for elevations is made the two point method. The two point

24

method is always used whenever there are no bridges present in the vehicle area, because

it is faster and sufficiently accurate. If a bridge is present the vehicle will switch to the

multipoint method. When a bridge is present in the grid square, the terrain class must check

to see if the vehicle is within a hot spot. The hot spot is an rectangular area that is centered

at the beginning of the bridge and is as wide as the bridge (Figure 13). If the vehicle is not

in a hot spot, nothing is done and a zero elevation is returned, but if it is in a hot spot the

vehicle direction must be checked. This is the purpose of the reference to the vehicle. Using

the reference, the bridge can now query the vehicle for its direction and speed. The

direction is used to determine if the vehicle is properly lined up with the bridge, and the

speed is needed for the case when the vehicle is backing over the bridge. Once it has been

determined that the vehicle is in a hot spot and headed onto the bridge, the vehicle reference

is used again to turn the vehicle's bridge tag to true.

If the vehicle is not proper aligned to get on the bridge, but it is in a hot spot the

vehicle will still get elevations from the bridge. This allows the vehicle to traverse the end

of the bridge in the same manner it would cross a berm.

2. Driving Over the Bridge

The vehicle can drive across the ends of the bridge as should be normal, but when

the vehicle has driven onto the bridge a new rule holds. If the vehicle's "on bridge" tag is

true, the vehicle obtains the elevation from the bridge, otherwise it only receives bridge

elevations when in the hot spots. To ensure realism, the vehicle must remain on the bridge

to continue receiving the elevations from it. In real life, a vehicle can turn perpendicular to

a bridge while in the middle of it, and it can drive off the end of the bridge. The vehicles

can drive onto the bridge, stop and turn perpendicular to the direction of the bridge. This

allows the players in the simulation to use vehicles to block bridges. Falling off abruptly

and driving off normally from the bridge are covered below.

25

Hot pot Rap 1 Span Ramp 2 Hot pot

Figure 13: BRIDGE HOT SPOTS

3. Driving and Falling Off the Bridge

Once a vehicle is on a bridge, it must be able to get off of the bridge normally or

in a more dangerous manner. If a vehicle's "on bridge" tag is set, it remains on the bridge

until it reaches a hot spot and is headed off of the bridge. A vehicle must be able to back

off the bridge, turn around and drive off the same way it came on (provided the bridge is

wide enough), and it should be able to drive off the opposite end of the bridge. The same

method that was used to get on the bridge is used to get off the bridge, except that it is in

reverse and that only the portion of the hot spot that is beyond the bridge is used. When the

vehicle enters the hot spot, the bridge will query the vehicle for its direction and speed, and

if they are within limits, the vehicle's "on bridge" tag is set False.

If the vehicle is on a bridge and only one of its tires is off the bridge, it should

remain on the bridge. If more that one tire is off of the bridge, the vehicle falls off of the

26

bridge. The way this is implemented is by letting the vehicle check its pitch and roll. If they

are out of bounds, the vehicle turns its "on bridge" tag to false and take its elevations from

the ground. The vehicle dies if the pitch or roll was too great.

4. Driving Under the Bridge

The most important part of the vehicle traversal is being able to drive underneath

the bridge. If the vehicle's "on bridge" tag is false, the vehicle proceeds under the bridge.

This is the real purpose of the "on bridge" tag. This use of the tag prevents the vehicle from

jumping up to the bridge and back down to the ground when it is past the bridge.

C. RUN-TIME MODIFICATION OF BRIDGES

Bridges can be modified during the exercise in the same manner as the earthworks, but

bridges can also be destroyed. The simplest method of rendering a destroyed bridge is to

not draw the span, but that looks more like an uncompleted bridge. Another method is to

remove a portion of the span from the center and place jagged edges on the ends of the open

span, but this takes more memory and time. Another method, the method chosen in this

work, is to draw the span with the middle of it touching the ground. This method required

only four addition points and four additional polygons, and effective represents a destroyed

bridge. Vehicles can not traverse the destroyed span.

27

V. NETWORKING AND DYNAMIC TERRAIN

Networking of dynamic terrain is an important factor of the realism and functionality

of the battlefield simulator. The use of networks allows multiple players spread over a

distance, and faster operation by spreading the work load out. This chapter covers issues

that relate to networking dynamic terrain, and the Protocol Data Units (PDUs) that are

proposed.

A. COMMUNICATIONS

An important factor of networking is the communication between the nodes or

players. What happens in one player's world should also happen in all of the player's

worlds. There must be reasonable compromise between sending enough information to the

network players to maintain real-time realism and still not overload the channel. The ideal

solution is to all amount of information for precise detail of the world, but this is time

intensive and overloads the network link. Another difficulty is the difference in machinery.

As the simulation is run the features that are so perfectly built on one workstation is

possibly buried in the terrain or floating in mid-air on another [LIND 92). Rather than

sending all of the precise measurements or vertices and material properties, a standard

containing only the minimum parameters to construct the terrain feature or modify it should

be sent. Each of the nodes would then be responsible for managing the information

according to their own specifications and hardware limitations.

For one node to communicate with another, there must be a standard of protocol data

units that all nodes can understand and manipulate. These PDUs must be consistent among

the players in the network and contain only the information needed to manage the

construction and modifications of the dynamic features. The standard used for this work is

derived from the PDU formats proposed by Lindberg [LIND 92], and based on the

Distributed Interactive Simulations (DIS) standard [IST 91].

28

Therm are several reasons why one node must communicate with another, but this

paper focuses only on the occasions when dynamic features are involved. There are six

cases discussed below as follows:

1. Signing on/off.

When a node signs on or joins the network during a simulation, it must be

informed of the features that exist from other nodes. This can be done by the simulation

manager or the node can request the features from the other nodes by itself. The approach

proposed by this paper is to let the station manager have all of the nodes transmit their

maximum feature ID. Once the node has a maximum ID, it can check it with its internal

records and request any missing features. Unless the node is the simulation manager, there

is no requirement when the node leaves the network.

2. Creation of a Feature.

When a player creates a new dynamic feature it must notify the other players of

this new feature.

3. Modification of a Feature.

When a player modifies an existing feature it must pass that information to the

other players. The PDU for this event is of the same format as the one used to create a

feature, but is of a different PDU type identification.

4. Removing a Feature.

Whenever a player deletes or removes a feature, the remaining players need to be

told to remove the feature from their world as well.

5. Requesting a Feature.

Occasionally a player does not receive a feature ID from another player. This can

happen for many reasons such as being temporarily off line or communication difficulties.

Once the player receives a feature ID that is greater than it expected it must request that the

29

originating player retransmit the missing events. If the originating player is not on line, the

Dynamic Terrain Server is responsible for sending the appropriate information.

6. Dynamic Terrain Server.

The dynamic terrain server must keep a record of all the maximum feature ID

numbers from each node. When a node requests to join the network, the dynamic terrain

server must have the remaining nodes transmit their maximum feature ID to the new node.

If the simulation manager must leave the simulation, then it must pass the duty of

simulation manager to another node as well as all of its internal list of feature IDs.

B. DYNAMIC TERRAIN PROTOCOL DATA UNITS (PDU'S)

There are five dynamic feature PDU proposed by this research: Destruct PDU used to

remove a feature, Construct PDU and Update PDU are used to create new and modify

existing features, Maximum Feature PDU used to notify other nodes of the number of

features created by this node, and Playback PDU used to request missing features from

another node. The proposed format for these nodes are in the following tables and each of

the fields are briefly described.

1. Dynamic Feature Construction and Modification PDU.

This PDU is used to send notification of the presence of a new feature in the

simulation, and it is also used when there is a change to an existing feature's appearance or

status. This PDU is described below and shown in detail in Table 1, "CONSTRUCT /

MODIFY PDUs," on page 31.

a. PDU Header The standard DIS header.

b. Node ID The standard DIS entity format minus the entity ID.

c. Feature ID This is a sequential number that is incremented each time a new

feature is created. On simulation start-up, it is set to zero, but, on occasion, when a node

rejoins the simulation, this number is passed from the dynamic terrain server.

30

d. Feature Type This is the type of feature being referenced. It is a C++ enumer-

ated type and returns a short integer for a value.

e. Time Stamp This is the standard DIS time stamp.

f. Position This is the starting position of the feature in world coordinates.

g. Direction This is the direction of travel from the starting point of the fea-

ture, and is only used by the berm and bridge features.

h. Height This field contain two floats that represent the height of the feature.

The first or primary height is used by berms to set its height, and by bridges to set the

height above ground of the first ramp where it joins the suspended portion of the bridge.

The secondary height is used only by the bridge feature to set the height of ramp two at the

far end of the suspended portion.

i. Length This field contains three floats. The primary length is used by all

of the features discussed in this paper. It is the radius of the crater, the length of the berm,

and the length of the suspended portion of the bridge. The second and third floats are used

only by the bridges for the lengths of ramp one and ramp two respectfully.

j. Material This is the enumerated material type for the material to be used

by the feature for representation.

k. Status This field is used by the bridge feature to indicate a destroyed or

whole bridge to be displayed.

TABLE 1: CONSTRUCT / MODIFY PDUs

Field Size Field Title Description

32 PDU Header 8 bits - Char Protocol Version
8 bits - Char Exercise identifier
8 bits - Char PDU type
8 bits - Char unused

31

TABLE 1: CONSTRUCT / MODIFY PDUs (CONTINUED)

Field Size Field Title Description

32 Node ID 16 bits - Short Integer Site ID
16 bits - Short Integer Node ID

16 Feature ID 16 bits - Short Integer

16 Feature Type 16 bits - Enumerated C++ type

32 Time Stamp 32 bits - Integer

96 Position 32 bits - float X
32 bits - float Y
32 bits - float Z

32 Direction 32 bits - float

64 Height 32 bits - float primary height
32 bits - float secondary height

96 Length 32 bits - float primary length
32 bits - float second length
32 bits - float third length

16 Material 16 bits - Enumerated C++ type

32 Status 32 bits - Integer

2. Destruction PDU.

This PDU is used to remove a feature from the simulation. Description of the

PDU follows below and is shown in detail in Table 2, "DESTRUCT PDU," on page 33

a. PDU Header See Table 1 for description.

b. Node ED See Table 1 for description.

c. Feature ID This is the identification number of the feature that is to be

removed from the simulation

d. Feature Type See Table 1 for description.

32

e. Time Stamp See Table 1 for description.

TABLE 2: DESTRUCT PDU

Field Size Field Title Description

32 PDU Header 8 bits - Char Protocol Version
8 bits - Char Exercise identifier
8 bits - Char PDU type
8 bits - Char unused

32 Node ID 16 bits - Short Integer Site ID
16 bits - Short Integer Node ID

16 Feature ID 16 bits - Short Integer

16 Feature Type 16 bits - Enumerated C++ type

32 Tune Stamp 32 bits - Integer

3. Maximum Feature ID PDU.

This PDU is used by a node to notify other players of its total number of features

that have been created. The PDU is shown in detail in Table 3, "MAXIMUM FEATURES

PDU," on page 34.

a. PDU Header See Table 1 for description.

b. Node ID See Table 1 for description.

c. Maximum Feature ID The number of the last feature created by this node.

d. Time Stamp See Table 1 for description.

33

TABLE 3: MAXIMUM FEATURES PDU

Field Size Field T1ile Description

32 PDU Header 8 bits - Char Protocol Version
8 bits - Char Exercise identifier
8 bits - Char PDU type
8 bits - Char unused

32 Node ID 16 bits - Short Integer Site ID
16 bits - Short Integer Node ID

16 Maximum 16 bits - Short Integer Total # of Features
Feature ID

32 Time Stamp 32 bits - Integer

4. Playback PDU.

This PDU is used to request a retransmission of features from another node. This

might be used when a node has been off line temporarily or if for some reason it missed the

transmission from the sending node. The initiating node sends this when it receives a

feature ID from a node that does not match its internal value for the next node. The PDU is

shown in detail in Table 4, "PLAYBACK PDU," on page 35.

a. PDU Header See Table 1 for description.

b Requesting Node This is the node that is requesting the retransmission.

c. Transmitting Node IID This is the node that is to retransmit the missing fea-

tures.

d. Start Feature ID This is the number of the feature to begin transmission with.

e. End Feature ID This is the last known maximum feature ID and is the stop-

ping point of the transmission.

34

f. Time Stamp See Table 1 for description.

TABLE 4: PLAYBACK PDU

Field Size Field "tide Description

32 PDU Header 8 bits - Char Protocol Version
8 bits - Char Exercise identifier
8 bits - Char PDU type
8 bits - Char unused

32 Requesting 16 bits - Short Integer Site ID
Node ID 16 bits - Short Integer Node ID

32 Playback 16 bits - Short Integer Site ID
Node ID 16 bits - Short Integer Node ID

16 Start Feature ID 16 bits - Short Integer

16 End Feature ID 16 bits - Short Integer

32 Time Stamp 32 bits - integer

C. SIMULATION RECOVERY

In networking, one must consider what happens when the dynamic terrain server fails

or when the entire system fails. Another consideration is the temporary suspension of the

simulation until a later date, to be resumed where it was stopped.

As far as part or all of the system failing, the standard switching of roles would occur

as necessary. The dynamic terrain server would take over any duties of the missing player

until such time as the player returns. If the server itself is the part that failed, then a new

server would be dedicated.

When a failure does occur, the dynamic terrain manager saves the terrain to a file to

be reused later when the system is on line. This is also done on normal shutdown so the

35

simulation can be restarted from the last status of the terrain. The implementation of

dynamic terrain in this research did not include networking, but saving the terrain to a file

has been implemented. The program can be started from default or by reading from a file.

36

VI. CONCLUSIONS AND FUTURE WORK

This work has implemented two types of dynamic terrain (berm and craters), bridges,

and vehicle traversal of same. This work has drastically improved the realism of NPSNET

through the addition of the dynamic terrain. The dynamic terrain was implemented using

C++ and object oriented programming. This also provides a basis for the transformation of

the current version of NPSNET from C to C++. The terrain class manages all of the objects

that are attached to it by calling methods of the objects. The object oriented capabilities of

C++ classes were beneficial in allowing the class objects to take care of any requirements

it has to complete a task. Vehicles traversing the terrain only have to ask the terrain class

for the elevations of its orientation points. The terrain takes care of asking the bridges and

deformations for the elevations, and the features themselves perform all the computations

as necessary.

The benefits of using C++ and an object oriented design make it impracticable not to

redesign NPSNET to C++ and incorporate the new terrain and dynamic feature developed

and implemented in this work. Vehicles can drive over and under bridges, and over berms

and craters in a realistic manner. Also implemented in this work was the physically based

model vehicles [PARK 92].

Future work on dynamic terrain includes implementing ditches, and real rivers and

lakes. Continued work on improving the object oriented design of NPSNET is imperative.

Networking the dynamic terrain and implementing the use of multiprocessor to speed the

system up would also be extremely helpful. Levels of resolution for the dynamic terrain

should also be implemented.

37

APPENDIX A CLASS HEIRARCHY

This appendix is the dependency and class hierarchy diagram for the implementation

of dynamic terrain.

elUsedain

38

APPENDIX B CLASS DESCRIPTIONS

Many of the data members used in this work were provided through the C++ class

libraries NPSCL [WILS 91] and NPSGDL [WILS 92].

CLASS DYNAMIC ID
This class is the identification of the bridges and deformations. It is designed with

networking in mind, so it includes space for site and host ID as well as the sequential

number of the feature created. Using a common identification system reduces the confusion

and complexity of the system. The static data members and member functions are always

available through the scope operator.

Data members

static int lastid; //The number of the next available ID

static int total; //The total number of features in the exercise

int site; //The site identification

int host; //The host identification

int ID; //The identification of the feature

Member Functions

dynamic idO;

The default constructor initailizes all parts to zero.

dynamicid(int S, int H, int id);

This constructor is used when reading an ID from a file. It does not increment
the count of ID numbers used.

dynamic.id(dynamicjid& did);

39

The copy constructor.

static void resume count(int cnt);

This function is used when starting the program from a file that has features.

void assign idO;

This function is used to increment the counter and assign it to the ID of the
feature.

static int lastcountO;

This function returns the value of the next available ID number.

static int num of.featureso;

This function returns the numbers of features currently in the exercise. This
is not the same as the ID counter.

int get.site();

This function returns the site number of the feature.

int get-hostO;

This function returns the host number of the feature.

int get idento;

This function returns the ID number of the feature.

bool operator=-=(dynamic_id& did);

This function checks all of the fields of the ID for equality, and returns true
if they are equal.

bool operator<(dynamicid& did);

This function returns true if did is greater than this id.

bool operator>(dynamicid& did);

This function returns true if did is less than this id.

void write id(ostream& file);

This function writes the ID to a file.

static dynamic-jd& read id(istreaam& file);

This function reads the file for the identification of a feature.

40

-dynamic " 110;

The class destructor

CLASS DEFORMATION
Class deformation is derived from the class countable RRRRR so that use of reference

counting pointers and shared memory is available. The deformation class is the data and

functions that are common to all types of dynamic terrain. There are some functions listed

below that are virtual. These functions are repeated by name in all of the derived classes

and must be listed in any future derived class of deformation. The allow the user to use a

pointer to the base class and make a virtual function call without worrying about what type

of object is a:tually pointed to. For example, the deformation could be a crater or a berm,

but in either case the same call to display will cause the feature at the end of the pointer to

display itself. The deformation class must know that the terrain does exist, but does not

need to all of the details, so there is a bit of double dependency.

Data members

terrain *ter.ptr, i/pointer to the terrain to use

vertex posit; //position of deformation

dynamic_id defjid; r/ident # of deformation

soil-types soiljtype; //type of soil

Array(mgptr) point.me; //which grid points should point to this def

bool displayed;/ /has this def been displayed yet

Member Functions

deformationo;

41

This is the default constructor. All data members initialized to zero.

defornation(terrain *ptr, soiljtypes soil);

This constructor identifies the underlying terrain and the soil type of the
train.

deformation(terrain *ptr, vertex v);

This constructor takes a pointer to the underlying terrain and a position of
placement. The soil type is taken from the underlying terrain.

deformation(terrain *ptr, vertex v,soil-types soil);

This constructor takes the terrain pointer, position of placement, and the
material type for a deformation object.

deformation(const deformation& def);

This construct builds a defomation object from another deformation object.

virtual -deformationO;

This is the class destructor.

vertex getjPositO;

This function returns the placement position of a deformation to the requester.

void setplosit(vertex v);

This function allows the placement position of a deformation to be changed.

dynamic_id& whoyouo;

This function returns the identification number of a deformation.

void set soil(soilttypes s);

This function allows a user to change the soil material type of a deformation.

soiltypes get soilO;

This function returns the soil property type for a deformation.

terrain *getterrainyptrO;

This function returns a pointer to the underlying terrain being used by a
deformation.

void set terrainptr(terrain *t);

This function is used to initialize or change the underlying terrain to which the

42

deformation must attach itself to.

void displayoffo;

This function is used to turn the displayed flag off. The flag can only be turned
on by the deformation during display or writing to a file.

virtual void calculateo;

This function is used by the derived classes to compute the 3D position for the
points of the structure.

virtual void predestructo;

This function is used when deleting a deformation to ensure that all grid
squares that have a reference pointer to this deformation from their linked list.

virtual void displayo;

This function tells the class derived from deformation to display itself.

virtual bool made contact(float xpos, float zpos);

This function is used to determine if a point is in bounds of a deformation, it
does not consider height only ground position.

virtual float how high(float xpos, float zpos);

This is the function that returns the elevation of a point on a deformation to the
requesting user. If the point is not on a deformation, the deformation returns

a zero.

virtual void store 2(ostream& file);

This function is used to write the deformation's information to a file.

static void read from(istream& file, terrain *Tptr);

This is the function is used to read from a file the information needed to
construct a deformation. It then calls a special private constructor to build the
deformation and ensure that the identification numbers remain non-repetitive.

CLASS CRATERS
The crater class is derived form the deformation class and contains all of the additional

information needed to construct and used craters. The crater objects can be accessed

directly or through the deformation pointers and virtual functions. In order to access the

crater objects directly, the deformation pointer must be cast to a crater pointer.

43

Data members

float radius; //radius of the crater

vertex sector[GRIDS] [RINGS]; //points of the crater

vertex normals[GRIDS][RINGS]; //normals of the crater

There are sixteen GRIDS and four RINGS in a crater.

Member Functions

cratero;

This is the default constructor for craters. All data member initialized to zero.

crater(terrain *Tptr, vertex pos, float diam, soil-types soil);

This is a crater constructor that takes a pointer to the underlying terrain, a
placement vertex, a diameter for the crater, and a soil property type.

crater(terrain *Tptr, vertex pos, float diam);

This is a crater constructor that takes only the terrain pointer, the placement
point and the diameter. The soil type is taken from the terrain.

crater(const crater& crat);

This copy constructor builds a crater object from another crater object.

-craterO;

This is the crater destructor

float get_radius);

This function returns the radius of the crater.

void set radius(float diam);

This function changes or initializes the crater radius.

float pull xpos(int a, int b);

This function returns the x value of a crater point at index a,b.

44

float pull zpos(int a, int b);

This function returns the z value of a crater point at index ab.

float pullyheight(int a, int b);

This function returns the y or height value of a crater point at index ab.

vertex pullali(int a, int b);)

This function returns the vertex values of crater point at index ab.

void set xpos(int a, int b, float pos);

This function sets the x value of the point at index ab. This useful to create
special looking craters for erosion and breaching.

void set zpos(int a, int b, float pos);

This function sets the z value of the point at index a,b. This useful to create
special looking craters for erosion and breaching.

void set_yheight(int a, int b, float height);

This function sets the y or height value of the point at index ab. This useful to
-create special looking craters for erosion and breaching.

void set all(int a, int b, float xpos, float ypos, float zpos);

This function sets the vertex value of the point at index a,b. This useful to
create special looking craters for erosion and breaching.

virtual void calculateo;

This function is called to compute the points of the crater and the height of
the crater. It also calls a private function to compute the normals for the crater
points. This function will also take care of placing the crater on the terrain and
being put on the linked list of reference counting pointers for each grid square
it has touched.

virtual void predestructo;

This function is used when removing a crater object from the world. It ensures
that all of the mapgrid squares remove this crater from their list of
deformations.

virtual void displayo;

This functions causes the crater to display itself.

virtual bool made contact(float xpos, float zpos);

45

If a point (on the ground) is within the bounds of the crater, then this function

returns true.

virtual float how high(float xpos, float zpos);

This is the function that returns the elevation of the crater at a point. A zero
return means that the point was outside the bounds.

virtual void store_2(ostream& file);

This function writes the important crater information to a file so that the crater
can be reused later.

static void read crater(istream& file, terrain *Tptr);

This function reads the crater information from a file and is passed the pointer
of the terrain to use. Then a private constructor is called to build the crater and
ensure that a valid ID is used.

BERMS
Berms are basically niounds of earth that have been pushed up for one reason or the

other. These berms mold to the underlying terrain and can have any type of material

property. Berms use the same enumerated type for object material as the craters, but berms

can be given a different material type, for example, the user might want a concrete barrier

on ground that is red clay. The berms are derived from the deformation class. Berms are

built from the placement point and run the distance of the length and in the direction

provided.

Data members

float height; //height above the ground

float width; //width at the base

float length; //The length of a berm

float direction; lithe theta of the berm - 0 is +x direction

vertex bermgrid(XLINESJ[ZLINESJ; /the vertices of the berm

vertex normals[XLINESI[ZLINES]; I/the normals of the berm

46

There are four ZLINES in a berm and eleven XLINES.

Member Functions

bermO;

This is the default berm consructor. All data members are initialized to default
values.

berm(terrain *Tptr, vertex pos, float hgt, float wdt,

float lgt, int dir, soiltypes soil);

This Constructor takes all of the parameters to build and place a berm: a
pointer to the underlying terrain, the placement position, height above ground,
length, width, the direction from the placement point, and the material type.

berm(terrain *Tptr, vertex pos, int dir);

This constructor takes a pointer to the underlying terrain, a placement position,
and a direction, and then uses the defaults for the remainder of the data
members.

berm(berm& B);

This is the copy constructor that creates a berm from another berm.

-bermo;

This is the class destructor.

float get.heighto; }

This function returns the height of the berm.

void set height(float hgt);

This function is used to change the height of the berm.

float getwidtho;

This function returns the width of the berm.

void set width(float wdt);

This function is used to change the width of the berm.

float getlength();

This function returns the length of the berm.

47

void set-length(float Igt);

This function is used to set or change the length of the berm.

float getdiredtiono;

This function returns the direction of the berm. A direction of zero is pointing
to the positive x axis. A positive increase of the direction moves the berm in
a counter-clockwise manner.

void set direction(float dir);

This function is used to set the direction of the berm.

static void read file berm(istream& file, terrain *Tptr);

This function is used to read the information needed to build a berm from
a file. This function is always available to the user because it is static. It is
called using the Scope operator, (ex. berm::readfile.berm(file, terrain). Once
the file has been read, the special constructor is called. The special constructor
is private and unavailable to the user. Its purpose is to maintain identification
interegrity

virtual void calculateo;

This function is used to calculate the points of the berm. This must be called
whenever a dimension of the berm changes. Once the points of the berm have
been calculated the function will call the private function to compute the
normals of the points.

virtual void pre_destructO;

This function is used when removing or deleting a berm from the terrain. It
ensures that all of the grid squares remove this berm from their linked list of
deformation.

virtual void displayo;

This function displays the berm. The berm will only be displayed once, unless
the user resets the display through the deformation displaysoff0 function.

virtual float how high(float xpos, float zpos);

This function returns the elevation of a point anywhere on the berm.

virtual bool made.contact(float xpos, float zpos);

This function is a quasi bounding box, but only for an x and z position. If the
point past in is within the berm, this function will return true.

virtual void store_2(ostream& file);

48

This function writes the berm to a file.

BRIDGES
The bridge class is basically the same as the deformation and berm classes, but is

different because of the differences required for vehicle traversals. The bridge class must

also know about the existence of terrain class. The bridge is made up of three sections: two

ramps and one span. There are two heights for the bridge, one for each ramp end, where it

joins the span. The bridge has only one width. Each section of the bridge has a length. The

bridge is designed so the placement is at the joint of the span and ramp one. This allows the

span to be set to cover a specified distance, and the have the on/off ramps extend from the

ends of the span. For a vehicle to get on the bridge, it must be aligned properly, in a hot

spot, and headed on to the bridge. The hot spot is a rectangle area with a length equal to the

width of the bridge, and centered on the ramp where it joins the terrain. The vehicles must

pass a reference to themselves to the bridge, so that the bridge can determine the vehicle's

alignment and direction in relation to that of the bridge. The bridge class is designed so that

other classes of bridges can be designed and used, just like the berms and craters are to

deformations.

Data members

terrain *ter._ptr, //pointer to the terrain to use

vertex posit; //position of bridge

int bridgeid; //ident # of bridge

float groundatcenter, !/elev of grnd at mid of bridge

float width; //width of the bridge

float Rl Iength; //length of ramp one

float R2jength; //length of ramp two

float flatjength; //length of flat

float flatýhgtR 1; //hgt of bridge at end of ramp 1

49

float flaLhgtR2; //hgt of bridge at end of ramp 2

bool destroyed; I/Is bridge destroyed

bridge.mattypes bridge-mat; //material for the bridge

Array(mgtpr) point thisbridge;I/which grids point to this bridge

vertex bridge-pts[4][2]; //points for the bridge

vertex bridgejbtm[2[2]; //two point for the bottom

Member Functions

bridgeO;

This is the default construct. The data members are set to prearranged default
values.

bridge(terrain *ptrvertex pos);

This constructor takes only the poinLer to the underlying terrain and a
placement point, the rest of the data members will use defaults.

bridge(terrain *ptr, vertex pos, bridge mattype bmat);

This constructor takes only the pointer to the underlying terrain, a placement,
and a material to use for construction.

bridge(terrain *ptr, vertex pos, bridge-mattype bmat, float dir);

This constructor takes a terrain pointer, a placement position, a material to
use, and a direction to run.

bridge(terrain *ptr, vertex pos, bridge-mattype bmat, float dir,

float width, float height, float length);

This constructor takes a terrain pointer, a placement point, a material type,
a direction to run, a width, a height to be used on both ends of the span, and
an overall length of the entire bridge.

bridge(terrain *ptr, vertex pos, bridge-mattype bmat, float dir,

float width, float hgtjl, float hgtj2, float lenjrl,

float len_.top, float len_r2);

50

This constructor takes all of the parameters to build and place the bridge.

bridge(const bridge &B);

The copy constructor.

virtual -bridgeO

The destructor.

vertex getipositO);

This function return the placement point of the bridge.

void setlosit(vertex v);

This function sets or changes the placement point.

terrain *getterrain.ptrO;

This function returns a pointer to the underlying terrain being used by the
bridge.

void set terrain-ptr(terrain *t);

This function is used to set or change the underlying terrain being used by the
bridge.

void set width(float wdt);

This function is used to set or change the width of the bridge.

float get widtho;

This function returns the width of the bridge.

void set R1 length(float 1);

This function is used to change the length of the ramp closest to the placement
point, called ramp one.

void set R2/Iength(float 1);

This function is used to change the length of the ramp furthermost from the
placement point, called ramp two.

void set flat length(float 1);)

This function is used to change the length of the span.

float get Rl-lengtho;

This function returns the length of the ramp closest to the placement point,

51

ramp one.

float getRLIength();)

This function returns the length of the ramp furthermost from the placement
point, ramp two.

float get fatlengthO;)

This function returns the length of the span.

void set bridge destroyedO;

This function is used to set the bridge destroyed flag to true. When the bridge
is destroyed the middle of the span will touch the ground.

void restore bridgeO;

This function is used to set the bridge destroyed flag to false. Used to repair
a destroyed bridge.

bool is-destroyedO;

This function returns true if the bridge has been destroyed.

void set bridge, mat(bridge..mattype t);

This is used to changed the material used to build the bridge. This is from list
of available material from the enumerated list of soil types.

bridge.mattype get bridgemato;

This functions returns the type of material being used by the bridge.

virtual void calculateo;

This function is used to build or compute the points of the bridge. It calls
the private function to calculate the normals of the polygons of the bridge.

virtual float bridge elev(float xpos, float zpos);

This function is similar to the how.highO functions of the deformation
derived classes, it returns the elevation of a point on a bridge IF the vehicle is
either in a hot spot or is on the bridge.

virtual void displayo;

This function displays the bridge according to its status, normal or destroyed.

52

MAPGRID
This is the class of mapgrid points. It is the C++ version the struct mapgridstruct, used

in the C version of NPSNET. The mapgrid point is information control center for one grid

square. It contains linked list of reference counting pointer to deformations, bridges, and

vehicles. The use of the reference counting allows many mapgrid points to point to the same

object, specifically the deformations and bridges, while only having one copy in memory.

Many of the member functions of this class only call the member functions of deformation,

bridges, and vehicles that do the same function. The purpose of this is to provide the user

access to the functions of the objects without having to know the type of object. This class

also provides the necessary list management functions needed to add, access, remove items

from the lists. The mapgrid point class is called mgridpnt, and correspond to a corner of a

grid square.

Data members

float elevation; //elevation of terrain

vertex norm; /MThe normal of this node

soiltypes upper-soil; //soil type for the upper triangle

soiltypes lowersoil; //soil type for the lower triangle

List(Refptr.deformation) deform; //Linked list of defs attached

List(Refptr.bridge) brij; I/Linked list of bridges attached

List(RefptrYehicle) veh; //Linked list of vehicles

Member Functions

mgridpnto;

This is the default construction for a mapgrid point.

mgridpnt(float elev);

53

This constructor initializes the elevation value of the mapgrid point as it is

constructed.

mgridpnt(mgridpnt &MG);

This is the copy constructor.

-mgridpntO;

This is the destructor.

float elevO;

This function returns the elevation of the terrain at this mapgrid point

void elev(float E);

This functions sets or changes the elevation at this point.

vertex normalo;

This function returns the value of the normal at this mapgrid point.

void normal(vertex &N);

This function is used to set the normal at this mapgrid point.

soil-types soil uppero;

This function returns the soil type of the upper triangle of the grid square.

soiltypes soiUowerO;

This function returns the soil type of the lower triangle of the grid square.

void setupper soil(soiLtypes s);

This function is used to set or change the soil type of the upper triangle of the
grid squares.

void set lower soil(soil-types s);

This function is used to set or change the soil type of the lower triangle of the
grid square.

void read from(istrearn& file);

This function reads a mapgrid point from a file. This function does not read in
the items of the linked list. That is done separately.

54

void store on(ostream& file);

This function saves the information, except for the linked list, to a file.

void store features(ostream& file);

"This is the function used to save the deformations and bridges in the linked
list of this mapgrid point to a file.

void featuresoffO;

This function goes through the bridge and deformation linked list turning off
feature's display flag.

bool any defsO;

This function checks to see if there are any deformations in this point's
deformation list

bool defvalidO ;

This function is used when walking through the linked list of deformations, the
current pointer, and returns true if there is a deformation at the end of the
pointer.

void first defo;

This function moves the deformation list iterator to the beginning of the list.

void lastjdefo;

This function moves the deformation list iterator to the end of the list of
deformations.

void next defO;)

This function increments the current pointer to the next deformation in the
list.

Refptrdefonnation& curr defO;)

This function returns a reference counting pointer to the deformation being
pointed to by the current pointer.

void add def(Refptr.deformation& dp);

This function is used to add a deformation to the end of the linked list of
deformations.

Refptr_deformation& locate def(dynamic-id& ID);

This function returns a reference counting pointer to a deformation, after

55

locating it by its identification number.

Refptrdeformation& locate.def(float xpos, float zpos);

This function returns a reference counting pointer to a deformation, after
locating it by a position. It will return the first deformation that includes
this point.

void remove.def(Refptr_deformation& dp);

This function is used to remove a deformation from this mapgrid point's
linked list of deformations, that is pointed to by the pointer dp.

void remove.alldefsO;

This function empties the deformation linked list of all deformations.

void displaydefso;

This function displays all of deformation in the linked list

void recalc.defsO;

This function is used to have all of the deformations in the linked list
recalculate themselves.

float height(float xpos, float zpos);

This function checks the deformations in the linked list for a deformation at
the given point, and returns the elevation at the point. The highest elevation
is returned.

bool def hit(float xpos, float zpos);

This function returns true if the point given is within a deformation.

soiltypes def soil(float xpos, float zpos);

This function returns the material (soil) type of the deformation at the given
point, if a deformation is there.

bool any bridgeo;

This function returns true if there is a bridge in the bridge linked list at this
mapgrid point.

bool bridgevalido;)

This function returns true if the bridge list's current pointer is pointing to a
bridge.

void first bridgeo;)

56

This function moves the bridge list's current pointer to the first bridge in the

list.

void Ilat.bridgeO;

This function moves the bridge list's current pointer to the last bridge in the
list.

void next bridgeo;

This function increments the bridge list's current pointer to the next bridge in
the list.

Refptr.bridge& currtbridgeo;

This function returns a reference counting bridge pointer to the bridge being
pointed to by the current pointer.

void add-bridge(Refptrjbridge& bp);

This function add the bridge pointed to by bp to the end of the bridge linked
list.

Refptr..bridge& locate bridge(dynamicid& ID);

This function returns a reference to a bridge, after locating it in the bridge list
of this mapgrid point by the identification number.

Refptr.bridge& locate bridge(float xpos, float zpos);

This function returns a reference to a bridge, after locating it in the bridge list
of this mapgrid point by the point passed in. It returns the first bridge that has
this point.

void remove bridge(Refptrjbridge& bp);

This function removes the bridge pointed to by bp from this mapgrid point's
linked list.

void remove allbridgeo;

This function empties the bridge linked list for this mapgrid point.

void displaybridgeo;

This function is used to display all of the bridges in this mapgrid point's list.

void recalc-bridgeo;

This function is used to have all of the bridges in the list recalculate
themselves.

57

float bridge.height(float xpos, float zpos, Refptr_.Vehicle& Veh);

This function returns the elevation of bridge at point (xposzpos). The vehicle
reference is needed for alignment determination and setting the vehicle on
bridg-. tag on/off as necessary.

bool bridge hit(float xpos, float zpos);

This function returns true is point (xpos,zpos) is within the bound of a bridge
in this mapgrid point's linked list of bridges.

soiltypes bridge.soil(float xpos, float zpos);

This function returns the bridge material type of the bridged located at
(xpos,zpos) and in this mapgrid point's list of bridges.

bool anyveho;

This function returns true if there are vehicles in the list at this mapgrid point.

bool vehvalido;

This function returns true if the vehicle's list current pointer is pointing to
a vehicle, otherwise it returns null.

void next veho;

This function increments the vehicle list's current pointer to the next vehicle
in the list.

void first veho;

This function move the vehicle list's current pointer to the first vehicle in the
list.

void last vehO;)

This function moves the vehicle list's current pointer to the last vehicle in the
list.

RefptrVehicle& cur veho;

This function returns a reference counting pointer to vehicle that is pointed to
by the vehicle list's current pointer.

void add.veh(RefptrVehicle &v);

This function adds the vehicle pointed to by v to the tail of this mapgrid point's
linked list of vehicles.

void remove.veh(Refptryehicle &v);

58

This function removes the vehicle pointed to by v from the list of vehicles at

this mapgrid point.

void remove ailvehO;

This function empties this mapgrid point's linked list of vehicles.

void display.vehO;

This function displays all of the vehicles in the vehicle list at this mapgrid
point.

TERRAIN

The class terrain is the manager for the exercise. It knows about all of the

deformations, bridges, and vehicles that are in the exercise. It is responsible for the

interaction between objects in the exercise. When a vehicle needs an elevation of the

terrain, in need only query the terrain class. The terrain class then queries the bridges and

deformations for the proper elevation to use. The terrain is an nXn matrix of mapgrid

points.

Data members

int numbertofgrid; I# of gridlines in the terrain

int size-of-.grid, //distance btwn each gridline

static const int bitgridsize; //sqr area cvrd by bits of the Bitgrid

mgridpnt **ground; //pointer to the array of grid nodes

Bitgrid *def-present; //used to indicate a feature in the area

Member Functions

terraino;

The default constructor.

59

terrain(int num, int sz);

This constructor builds a terrain of numXnum, with a distance of sz between
mapgrid points.

void init terrain(int num, int size);

This function is used to build up a terrain on an existing terrain pointer. It will
build up a terrain of numXnum, with size distance between the mapgrid points.

-terrain() ()
The terrain destructor

void read file(const string&);

This function is used with the menu item "Terrain - File". It reads an elevation
file that is formatted for the C version of NPSNET.

void read terrainfile(const string& filename);

This function reads a terrain file that has been saved by this class. It first builds
the terrain from the number of points and size specified at the beginning of the
file. Then it reads in the mapgrid points, and after that it reads in any features
that are listed.

void save terrain(const string& filename);

This fanction saves the current state of the terrain to file.

void set flat(float elev);

This function is used with the menu item "Terrain- Flat". It sets the elevation
of all mapgrid points to the value of elev.

int gridsize0;

This function returns the distance between the mapgrid points for this terrain.

int gridnumO;)

This function returns the number of gridpoints in this terrain.

int maxsizeO;

This function returns the actual size ,f the terrain.

void set elev(int a, int b, float e);

This function is used to set the elevation at mapgrid point [a][b] to the value
of e.

60

float getelev(int a, int b);
This function is used to return the elevation at mapgrid point [a]I[b].

void calc-normO;

This function is used to calculate the normals of the terrain grid.

void displayo;

This function is used to display the entire terrain grid and all of the objects
in it. Not recommend to be used unless a very small terrain and limited
objects and features are used.

void display(float xpos, float zpos);

This function is used to display only the five gridsquares on each side of the
point (xpos,zpos), and all of the objects and features in these gridsquares.

void feature display offo;

This function is used to turn off all of the display flags of the deformations and
bridges. Primarily used at the end of the display loop or in writing the features
to file.

void feature displayoff(float xpos, float zpos);

This function is used to turn off the display flags of the deformations and
bridges that are within the moving display box around point (xpos,zpos).

bool inbounds(float xpos, float zpos);

This function returns true if the point (xpos,zpos) is on the terrain field, and not
out of bounds.

bool x inbounds(float xpos);

This function returns true if xpos is on the terrain and in bounds.

bool z inbounds(float zpos);

This function returns true if zpos is on the terrain and in bounds.

float nodef elev(float xpos, float zpos);

This function is used to find the elevation of the terrain at point (xpos,zpos)
without checking for bridges or deformations. Used primarily in placing
bridges and deformations.

float groundelev(float xpos, float zpos, RefptrVehicle& veh);

61

This function is used to get the elevation of the terrain at point (xpos,zpos).
The vehicle reference is used by the bridges for alignment checking and
bridge tag setting.

mgridpnt& gridpoint(int i, int j);

This function returns a reference to the mapgrid point [a][b].

mgridpnt* touchedgrid(float xpos, float zpos);

This function returns a pointer to mapgrid that controls the grid square that
contains the point (xpos,zpos). Used by the bridge, crater, and berm classes
when constructing.

soil_types get soil(float xpos, float zpos);

This function returns the soil material of the terrain, deformation or bridge at
point (xpos,zpos).

float stat soilfrict(float xpos, float zpos, int veh_type);

This function returns the static coefficient of friction between non-moving
vehicles and the terrain soil type at point (xpos,zpos).

float dynsoilfrict(float xpos, float zpos, int vehtype);

This function returns the dynamic coefficient of friction between non-moving
vehicles and the terrain soil type at point (xpos,zpos).

void newdef(Refptr._deformation& dp);

This function adds the deformation pointed to by dp to the terrain.

Refptr_deformati.on& find def(dynamicid& ID);

This function returns a reference counting pointer to a deficrmation after
locating it by identification number.

Refptr_deformation& find.def(float xpos, float zpos);

This function returns a reference counting pointer to a deformation after
locating it at point (xpos, zpos).

void eliminate def(Refptrdeformation& dp);

This function removes the deformation pointed to by dp from the terrain.

void remove def(int i, int j);

This function removes all of the deformations at mapgrid point i][Ul.

void remove alldefso;

62

This function removes all of the deformations from the terrain. Used to reset.

void def recaicO;

This functions is used to recalculate all of the deformations on the terrain.

void def recalc(int i, int j);

This function is used to recalculate all of the deformations at mapgrid point
[iUl].

bool def contact(float xpos, float zpos);

This function returns true if there is a deformation at point (xpos,zpos)

void new bridge(Refptrjbridge& bp);

This function is used to add the bridge pointed to by bp to the terrain.

Refptt'_bridge& find bridge(dynamicid& ID);

This function returns a reference counting pointer to a bridge, after locating it
by its identification number.

Refptrbridge& find bridge(float xpos, float zpos);

This function returns a reference counting pointer to a bridge, after locating it
at point (xpos,zpos). This is the first bridge found only.

void eliminate-bridge(Refptr bridge& bp);

This function is used to remove the bridge pointed to by bp from the terrain.

void remove bridge(int i, intj);

This function is used to remove all of the bridges at mapgrid point [i]U].

void remnoveallbridgeso;

This function is used to remove all of the bridges from the terrain. Used to
reset.

void bridgeprecalcO;

This function is used to recalculate all of the bridges on the terrain.

void bridgerecalc(int i, int j);

This function is used to recalculate all of the bridges at mapgrid point [i]Ul.

bool bridge contact(float xpos, float zpos);

This function returns true if there is a bridge at point (xpos,zpos).

63

bool is-def at location(float x, float z);

This function returns true if the bit that represents the area for point (x,z) is
on. This is part of the bitgrid that subdivides a gridsquare into smaller squares
to reduce the time a vehicle uses the multipoint method of vehicle orientation.

void set def at location(float x, float z);

This function turns on the bit that represents the point (x,z) for the presence
of a bridge or deformation. Bridges use the same bit because the vehicles use
the same method of orientation.

void add-vehicle(RefptrVehicle& v);

This function adds the vehicle "v" to the terrain. It will put the vehicle on the
appropriate mapgrid point linked list of vehicles.

void remove vehicle(RefptrVehicle& v);

This function removes the vehicle "v" from the terrain.

void remove all vehO;

This function removes all of the vehicle from the terrain.

void move vehicle(vertex& oldpos,vertex& newpos, RefptrVehicle& V);

This function is used when the moving vehicle updates its position. It removes
the vehicle from one square's list to the receiving square's list as the vehicle
crosses the boundary.

64

APPENDIX C PROGRAM USER'S GUIDE

This appendix contains all of the information required to run the dynamic terrain

simulation program. The simulator can read terrain from a specified file or create its own

terrain. It saves the terrain and the features to a file upon program termination. This

appendix will divided into the following sections: How to start the program, and Program

Menu and Key Bindings.

How To Start the program.
The dynamic terrain simulator is start by typing the program name "dynamic" on the

command line in the following manner:

% dynamic <M mode > < Ifilename > < Ofilename >

< optional> Definitions

M - is the mode of operation for building the terrain, from a file or default.

mode - is N for normal, F for file reading

I - indicates that the next argument is the input filename

0 - indicates that the next argument is the output filename

Menu Selection and Key Bindings.

Menu Selections

Change Vehicle - This allows the user to switch to vehicles.

Grid On - This allows the user to turn on the grid that outlines the center grid

square of the terrain. Useful to find the center of the world and mark the editable terrain

elevation points.

Grid Off - This turns the center grid square outline off.

Targeter On - This turns the feature placement and selector cross hairs on, and

must be on to edit or place a feature in the simulator.

Targeter Off- This turns the cross hairs off, and disables placement and editing

of features.

65

Feature Mode - This selects how the cross hairs are used, Edit or Place.

Features - This menu item allows the user to select on of the three features,

craters, berms, or bridges, for placement or editing. To edit a feature the appropriate feature

type must be selected.

Materials - This menu item opens to a list of material types that are available to

the user for new features.

Terrain - This menu item allows the user to change the appearance of the terrain

from an initial flat terrain to terrain with randomly generated elevations, or visa versa.

Vehicle Dynamics - This menu allows the user to turn the physically based

modeled vehicle dynamics on or off.

Reset - This menu item Clears the terrain of all dynamic terrain features.

Exit - Exit the program and save the status of the terrain to the default file
"outbound" or to the output file specified by the user on program start-up.

Key Bindings

Legend:

KEY Press the key listed.

KEY) + KEY2 Press both keys together.

MENUBUTTON- If the right mouse button is pressed the popup menu will

appear on the screen.

LEFTMOUSE - If the left mouse button is pressed, a dynamic terrain feature

will be place or selected, depending on the mode of the targeter and its location.

LEFVI ARROW KEY - If the targeter is on, it moves left (negative x), otherwise

the driven vehicle turns left.

RIGHT ARROW KEY - If the targeter is on, it moves right (positive x),

otherwise the driven vehicle turns right.

66

UP ARROW KEY - If the targeter is on, it moves up (negative z), otherwise the

driven vehicle speeds up.

DOWN ARROW KEY - If the targeter is on, it moves down (positive z),

otherwise the driven vehicle slows down or goes into reverse, if the speed is 0.

MINUSKEY - Decrease the diameter of a editable crater or set the diameter for

the next crater to be placed, or decrease the width of a editable berm or bridge.

MINUS KEY + SHIFT KEYS - Decrease the height of a editable berm or set

the height of the next berm placed.

MINUS KEY + ALT KEYS - Decrease the length of a editable berm or set the

length of the next berm placed.

MINUS KEY + F2 KEY - Decrease the length of ramp one of a editable bridge

or set the length of the ramp for the next bridge placed.

MINUS KEY + F3 KEY - Decrease the length of ramp two of a editable bridge

or set the length of the ramp for the next bridge placed.

MINUS KEY + F4 KEY - Decrease the length of the span of a editable bridge

or set the length of the span for the next bridge placed.

MINUS KEY + FS KEY - Decrease the height of ramp one of a editable bridge

or set the height of the ramp for the next bridge placed.

MINUS KEY + F6 KEY - Decrease the height of ramp two of a editable bridge

or set the height of the ramp for the next bridge placed.

PLUS KEY - Increase the diameter of a editable crater or set the diameter for the

next crater to be placed, or decrease the width of a editable berm or bridge.

PLUS KEY + SHIFT KEYS - Increase the height of a editable berm or set the

height of the next berm placed.

PLUS KEY + ALT KEYS - Increase the length of a editable berm or set the

length of the next berm placed.

PLUS KEY + F2 KEY - Increase the length of ramp one of a editable bridge or

set the length of the ramp for the next bridge placed.

67

PLUS KEY + F3 KEY - Increase the length of ramp two of a editable bridge or

set the length of the ramp for the next bridge placed.

PLUS KEY + F4 KEY - Increase the length of the span of a editable bridge or

set the length of the span for the next bridge placed.

PLUS KEY + F5 KEY - Increase the height of ramp one of a editable bridge or

set the height of the ramp for the next bridge placed.

PLUS KEY + F6 KEY - Increase the height of ramp two of a editable bridge or

set the height of the ramp for the next bridge placed.

B KEY - Stop the driven vehicle.

RETURN KEY - Place or select a feature depending on the mode of the targeter

and the type of feature selected.

ALT KEYS + C KEY - Clears the terrain of all dynamic terrain features.

ALT KEYS + X KEY - Exit the program, saving the terrain and features to the

default file "outbound" or to the output file specified by the user on start-up.

ALT KEYS + G KEY - Toggle the center terrain grid square outline on/off.

ALT KEYS + T KEY - Toggle the targeter on/off.

LEFT BRACKET KEY - Decrease the elevation of the lower left comer of the

center terrain grid.

LEFt BRACKET KEY + SHIFT KEYS - Increase the elevation of the lower

left comer of the center terrain grid.

RIGHT BRACKET KEY - Decrease the elevation of the upper right comer of

the center terrain grid.

RIGHT BRACKET KEY + SHIFT KEYS - Increase the elevation of the upper

right comer of the center terrain grid.

PAGEUP KEY - If a bridge has been selected, the mode is edit, and the bridge

is destroyed, it is repaired.

PAGEDOWN KEY - If a bridge has been selected, the mode is edit, and the

bridge is destroyed, it is destroyed.

68

DELETE KEY - If a feature has been selected and the mode is edit, the feature

is removed from the terrain.

HOME KEY - If a berm or bridge has been selected and the mode is edit, it will

change direction in a counter clockwise manner. If the mode is place, the direction of it is

being set.

END KEY - If a berm or bridge has been selected and the mode is edit, it will

change direction in a clockwise manner. If the mode is place, the direction of it is being set.

V KEY - This key toggles the users view between inside and outside of a vehicle.

Outside the vehicle is the reference point.

SPACE BALL - The space ball is used to drive the selected vehicle (Figure 14).

Figure 14: Space Ball

DIAL BOX - The dial box is used to control the viewing position when outside

of the vehicle (Figure 15).

69

Dial Box

View Tilt

View Distance No! Used

View Direction Not Used

Turret Gun
Direction Elevation

Figure 15: Dial Box

70

LIST OF REFERNECES

[ARMY 83] U. S. Army, Battery Executive Officer's/Platoon Leaders' Handbook,
Cannon Artillery, US ARMY, Field Artillery School, Fort Sill, Oklahoma,
p9-3, February 1983.

[IEI 92] IEI Technical Report No. TR-17102-13000-1-05-92, Design Data
Handbook SIMNET/JANUS Interconnection, Crooks, William H., Fraser 11,
Robert E., Illusion Engineering, Inc., 28 May 1992.

[IST 91] Institute for Simulation and Training (IST), Protocol data Units for Entity
Information and Entity Interaction in a Distributed Interactive Simulation,
Military Standard (DRAFI), IST-PD-90-2, Orlando, FL, September 1991.

[DMA 86] Defense Mapping Agency Aerospace Center, Defense Mapping Agency
Product Specification for Digital Terrain Elevation Data (DTED), Second
Edition, April 1986.

[JANU 86] U. S. Army TRADOC Analysis Command, WSMR, JANUS(T)
Documentation Manual, June 1986

[LATH 92] Latham, Roy, "A Note on Earthworks for Distribributed Simulation",
Computer Graphics Development Corporation, Mt. View, CA 5 February
1992.

[LIND 921 Lindberg, Karl, "Dynamic Database Modification in Distributed
Simulation", Computer Graphics System Development Corporation, Mt.
View, CA, 29 February 1992.

[MOSH 92] Moshell, Michael J., Lisle, Curtis, Blau, Brian, Li, Xin, "Dynamic Terrain
Databases For Networked Visual Simulators", Presented at the IMAGE VI
Conference, Scottsdale, AZ 14 -17 July 1992.

[PARK 92] Park, H. K., NPSNET: Real-time 3D Ground-Based Vehicle Dynamics,
Master's Thesis, Naval Postgraduate School, Monterey, CA, March 1992.

[PRAT 92] Pratt, David R., Zyda, Michael J., Mackey, Randall L., and Falby, John S.,
"NPSNET: A Networked Vehicle Simulation With Hierarchical Data
Structures", Proceedings of IMAGE VI Conference, Scottsdale, AZ. 14 - 17
July 1992.

[WILS 91] Wilson, K.P., "Naval Post Graduate School Class Library - NPSCL - A basic
C++ class library", Version 1.0 October 1991

71

[WILS 92] Wilson, Kalin P., NPSGDL: An Object Oriented Graphics Description
Language For Language For Virtual World Application Support, Master's
Thesis, Naval Postgraduate School, Monterey, CA, September 1992.

[ZYDA 92] Zyda, Michael J., Pratt, David R., Monahan, James G., and Wilson, Kalin P.,
"NPSNET: Constructing a 3D Virtual World," in Computer Graphics,
Special Issue on the 1992 Symposium on Interactive 3D Graphics, MIT
Media Laboratory, 29 March - 1 April 1992, pp. 147-156.

72

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

David R. Pratt, Code CS/Pr 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr Michael J. Zyda, Code CS/Zk 6
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

LCDR Donald P. Brutzman, Code OR/Br
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Alan K. Walters, LT., USN 2
11312 Penanova St.
San Diego, CA 92129

73

